Processor Datasheet

Logan Greif, Krutik Shah, Cristine Le Ny
Computer Architecture
5/10/21

Computer Architecture Processor Overview of Features | 1

Overview of Features
e 32-bit architecture
e 32 x 64-bit general purpose registers
e 255 x 64-bit data memory registers

Computer Architecture Processor Table of Contents | 2

Table of Contents

OVEIVIEW OF FEATUIES ...ttt st sttt e b e s b e s et e sae e et e e bt e sbeesaeesanesabeebeennes 1
TADIE OF CONETENESeiueeiiee ettt ettt s bt e s bt e st e st e et e e b e e bt e sbeesaeeeateenbeenbeenneesanenas 2
I o)l T ={ U LU 3
R o) N I [o] LT PP PO TO TS PPTOTOUPRP 4
1 ArChitECTUIE OVEIVIEWeiiiiiiiiieeiee ettt ettt ettt et e sb e st e e st e e s bt e e sabeesabeeebeeesabeeesaseesnbeesaneeesareens 5
1.1 SiMPplified BIOCK DIQBIamcoci ittt ettt et ee e et e e e e et e e e e ebte e e s eabteeessasteeeesnraeaesanes 5
1.2 Description of Archit@CtUIre FEAtUIES........viiiiuiieieciiee ettt e ree e e e be e e e e atae e e eareeas 5
1.2.1 PrOZram COUNTEE ... sesenenes 5
1.2.2 INSEFUCTION IMBIMOTY eiiiiiiiiiiiteeee ettt s e sttt e e e e e s s e aabtaeeeeessessasstnaaeeesssnnns 5
1.2.3 T < E (] OO PP PTTPPPPTPN 5
1.2.4 ALU ettt et et b bt h e e h et s ae e e bt et e e bt e e he e ehe e eateeare e b e e beennes 5
1.2.5 (D1 I 1Y, =T o o T N 5

P (=Y - 1 =Y T L=l 1Ty T = PRSPPI 6
2.1 Figure of REGIStEr File DESIZNciiiiiiieeiiee ettt e e e st e e e s e e e e s sbee e e enareeas 6
2.2 [BT=TYol g o) uToT W) il BI=TY F=d o F PSP 6
2.3 Testbench Screenshots and DeSCrIPLiON.........oiicciiiiieciee e et e e aaeeeeas 7
231 CISTINE e et e e s e e s 7
2.3.2 KPUTIK .ttt st sttt et e b e sbe e sme e st e e e re e s reesnne e 8
2.3.3 [0 == [o TN 9

I Y U D 1T 7= o L PP UR SRR 10
3.1 FIBUIE OF ALU ..ottt e e e et e e e e et e e e e eaba e e e eeabaeeeesataeaeesnbaeeeennbeeesenrenas 10
3.2 Function Select Codes and RTL OPerationsoccveeeieiiieeiiiiee e esiiee e ceiree e ssiee e ssvee e e s svree s s 10
3.3 Description of Design and Optimization StEPSccuveieiiiiie i 10
3.4 L oY a ol T 1T = o TP PP 11
341 CISEINE e e ra e e 11
34.2 KPUBIK ettt sttt b e s bt sae e e ab e et e e sbe e s be e satesateeabeebeenns 12
3.4.3 [0 == | 1SRRI 12

N |V [T s o] AV O ¢ -1 o 4 1 o] o IOUOO OO PP PPUTTRPPPPRY 13
4.1 V1T 0 0o] VA A Yo o L T Y o T ol LRSS 13
4.2 Design and IMpPlemeNntation..... ... e e e e s e e e e e e et e e e e e e e e aranes 13
43 =TS o o T<T o Tol o DTSR PSRPRR 13

I D1 =Y o - | 1 [PPSR SRRt 15

Computer Architecture Processor List of Figures | 3

5.1 Figure of INStrUCTiON REGISTEN....ccc it e et e e e re e e e e e e eareeas 15
5.2 Figure of Program Counter Design and Descriptionccoccvueieiicieeecciiee e 15
53 Figure Of Datapath ... e 15
5.4 CONEIOL WOIA ittt ettt s e s bt e e st e e bt e e s abeesbeeesabeesabeeeneeesareeesareens 16
5.5 Description of Design Choices and Capabilities of Datapath........cccccoecieiiciie e, 17
5.6 TeSEDENCN ..o sttt et b e b e saee e 17

B CONEIOI UNItaiiniiiiiiie ettt ettt e sab e st e e e bt e e s b e e e bt e e sat e e sabeeesabeesabeeeanbeesreeesareenn 18
6.1 Figure(s) of CONTrol UNIt dESIZNeecieeiiiie ettt ee e e e ee e ee e e te e e rre e s te e ebaeesnneeenes 18
6.2 State diagram of CONLIOl UNIt........coiiiiiiiiiiiie e e e e aaee e 19
6.3 Description of design apProachcouiiii it 19
6.4 DeSCriPtioN OF CU FEEISTEIS . .uviiii ittt e e e etee e e e et ee e e e e tae e e e eatae e e esabaee e eenbeeeeennsenas 19
6.5 Description of testing done and testbench design.coooiiiieiii i 20

T QP U e aaaaaaaaaaaaaaaaaaaaaaanaeaaaaanns 21
7.1 Figure of Datapath, control unit, and MeEMOIIES.ccccveiiiiciiiiee e 21
7.2 Description of testing done to validate the CPU and the testbench design...........cccccvveennneen. 21

8 INSEIUCTION SO ..ot e s e e s ere e s 22
8.1 Section for coOmMmMON INSEIUCTIONS:.....ccuiiiiiiiiiie et sare s 22
8.1.1 Table of opcode field descriptions / terminologycccueveevieeieeciiecieeceeceesee e 22
8.1.2 Figure of inStruction fOrMatscc.eeii i e e et 23
8.1.3 Table of INStruUCtioN SET SUMMAIYoiiiiiiiee ettt etee e e e ebee e e e e bee e e e bee e e eeareeas 23
8.1.4 Table of instructions and cONTrol WOrdSc.eeiiieiieeiieiieriere et 23
8.1.5 Detailed instruction set list and descriptionsccceveciieiiicciee e 26

9 Programming EXAMPIESeiiiiiiiiiiiiiiee ittt ettt e et e e s e tte e e e st e e e s e bte e e e ebte e e e e btaeeeertaeeeaarraaeeane 28
9.1 Section for each team MembEr’'s Programi ..o icciiii i e 28
9.1.1 Table of assembly instructions and binary instruction Wordscccccoeeeeecieeeecciieeecennen. 28
9.1.2 Description of what your program doeS..........ceiveiiiiiiciiei e 28

10 PEITOIMANCE ...ttt st et e st e e b e e sre e sae e saresan e e neens 29
11 1 = = PPN 30
11.1 Listing of features that do not work as eXpected.cccueeiieciieeecciiee e 30
11.2 Description with as much detail as is known about why these problems exist.cccccceeeueunee 30

List of Figures

Figure 1.1. Simplified block diagram Of ProCeSSOr.......uviiiiciiiiicieece e e eaae e 5

Computer

Figure 2.1.
Figure 2.2.
Figure 2.3.
Figure 2.4.
Figure 3.1.
Figure 3.2.
Figure 3.3.
Figure 3.4.
Figure 4.1.
Figure 4.2.
Figure 5.1.
Figure 5.2.
Figure 5.3.
Figure 5.4.
Figure 6.1.
Figure 6.2.
Figure 7.1.
Figure 8.1.

Architecture Processor List of Tables | 4

Register file block diagram.........oouiiiiiiiii e s 6
Cristine's Register File Testbench SCreenshotccueivviciiiiicciie e 7
Krutik's Register File Testbench SCreenshotc.eeeeeciiiiiiciiii e e 8
Logan's Register File Testbench SCreenshotc.ceeiviiiiieciii e 9
GENEIAL ALU LAYOUL ..viiiiiiiiieieiiiee ettt sttt e ettt e s st e e s st e e s saba e e e sntaeessnasseeesnnseeeesnnsseeesan 10
Cristing’s ALU TeSTDENCN......oiiiii sttt sba e e naes 11
Krutik's ALU TESEDENCH ...eiiiiiieie et e s e s e e s s bee e e s ssataeeesanes 12

LOZAN'S ALU TESEDENCKH ...eiiiiiiiee e sbee e e s bee e e s sarae e e snee 12
Yol (T e Lol o) 2T N A RPN 13
AN Y I =T 1 o Y=T s Tl o TN 13

Process Of INSErUCTOr REGISTEI . .cciiiiiii it ettt e e et e e e et e e e e ebae e e e sateeesenaeeeeeanes 15
Diagram of Program Counter (Note all 32-bit inputs should be 64-bit)ccccccvuvvereciinennnnns 15
ARM Processor Datapath ...t 15
Program counter teSTDENCN.c.vviii et 17
(0o T d fo] IU] o1 ffe [T] (1 o o ISP 18

Control unit state diagram ... i e e e e e e e e eas 19
(O U Y oTol 1 BT =d - [s o FO ST 21
Bitfield addresses for different instruction formatscccoeviieieiiiiie e, 23

List of Tables

Table 3.1.
Table 3.2.
Table 3.3.
Table 5.1.
Table 6.1.
Table 8.1.
Table 8.2.
Table 8.3.
Table 8.4.
Table 8.5.
Table 8.6.
Table 8.7.
Table 8.8.
Table 8.9.

Function selects codes and RTL OPerations.ccueeeccuieeeeiiuieeeesiieeeeeiteeeeesireeeeeareeeeesaseeeeesnneeas 10
SEAtUS DIt FUNCLIONS .o e e s st e e e e s erte e e e snraeeesanes 11
List of necessary ALU OPEratioNnscc.ueieecuieieeciiiiee et e e estee e e te e e e are e e s e aba e e e e aba e e e enreeas 11
Control Signals, Their Function and What Each Value DOES..........cccceecvveeeecciiee e, 16
Control SigNal DESCIIPLIONS ...vviiiiiiiiee ittt cetee e cetee e e e e sre e e e ebee e e e sbee e e e sabaeeeesabaeesssabaeeeennreeas 19
Assembly INSTrUCtioNS t0 OPCOUEeeiieeiiiee ettt e et e e e e ara e e e eeabae e e e aaaeeeeas 22
INSTFUCTION SO SUMMIAIY c.uiiiiiiiiiiiiiiieeee et e e s st e e e e e s s ssbebeeaeeessssssserenaeeeas 23
Branch CONtrOl WOKdeeiiiiiiiiiiieeeite ettt ettt st ettt esabe e sbae e sabeesbeeesabeesabaeesanes 23
Arithmetic CONTIOl WOKd......coocuiiie ettt e et e e e e e e e e eata e e e eeasa e e e ensaeeeesaneeeaean 24
Arithmetic Immediate CoONtrol Wordcooviiiiiieiiiieccteeiee et 24
Logical Immediate CoONTrol WOKduueiieiieieecieececee ettt e e e atee e e arae e e e areeas 25
Wide Immediate CoNtrol WOrd..........oooeiiiii ettt ectte e e e e tte e e e e eaae e e e enreeaeeanes 25
Data Transfer CONtrol WOrd.........oo ettt ettt et e st e s sate e sbeeesanes 25
Instruction Categories and OPerationsccccuuviieeee it e e e reeee s 26

Computer Architecture Processor Architecture Overview | 5

1 Architecture Overview
1.1 Simplified Block Diagram

\\

Add ;’*y
—

L Data

Register # \
= PC 8+ Address Instruction Registers ALU Address
) Register # Data
Instruction wi=co
— memory Register # Y

Data

Figure 1.1. Simplified block diagram of processor

1.2 Description of Architecture Features

1.2.1 Program Counter

The PC is the program counter. The program counter counts by 4 for each instruction the processor
executes. The program counter is how the processor knows what line of assembly to execute at any
given time.

1.2.2 Instruction Memory
Instruction memory is where you write to/load the information into the register file. This may include
changing the value of a register of moving the value of one register to another.

1.2.3 Registers
A register is temporary memory. For the register file, you can either write or read the data that it within
each individual register. In total there is 32 x 64-bit registers.

1.2.4 ALU
The arithmetic logic unit (ALU) is the place where all the arithmetic and logic operations happen. The
inputs of the ALU are the specific registers that were selected from the register file.

1.2.5 Data Memory
The data memory is another source to store memory. For our design, the data memory is our RAM file.

Computer Architecture Processor

2 Register File Design

2.1 Figure of Register File Design

Fead

Murrber 4

Register File Design | 6

RegWrilg

¥

IIalll'r)
Register
MNumber

WriteDala

DEC

o
D

=D

D)

Port A

Ch [Eh e e
HOH HEH HEH
HCH] HEH
CH] EH YA

FPort B

MLX

2.2 Description of Design
This processor contains a register file housing 32 registers, each with 64 bits of memory. This processor’s
register file has two read busses, as well as one writes bus. To read data from the register file, the read
address lines (rdAddrA and rdAddrB) need to be set to the 5-bit binary address of the register for which
you wish to read from. Data from the registers will be made available to the ALU on the data output
busses rdDataA and rdDataB. To write to the register file, the 5 bits write address (wrAddr) needs to be
configured to the register number you wish to write to. The 64 bits of data to write will need to be
present and stable on the write data bus (wrData), the write enable will need to be high, and on the
next clock pulse, the data will be written to the selected register. All of the output and input busses to
the register file are routed to the ALU, while the select addresses are routed to the control unit.

Figure 2.1. Register file block diagram.

Computer Architecture Processor Register File Design | 7

2.3 Testbench Screenshots and Description
2.3.1 Cristine

/Req_testbench/rdAddrB
[Reg_testbench/wrAddr
[Reg_testbench/wrData
[Reqg_testbenchwrite
/Req_testhench/reset
[Reqg_testbench/dk
jReg_testbenchjrdDataA | 110191100111010100000040401:11000001010400001 11414104 116360103040 (1 {110 OO0 OO 00O OO oo oCoorooooroood
JReg_testbenchjrdDatzB |1101111001110101000000101011110000010101000011111101110100101010 [):D:Dj:):):)jjj:)h
[Reg_testbench/RO0 000100 10000101010011010100100100 11000000 100010010101111010000001 D 0 01 0101111010

JReg_testbench/ROL 1000010010000100110101100000100110110001111100000101011001100011

JReg_testbench/RDZ 0000011010111001011110110000110101000110110111111001100110001101

JfReg_testbench/R03 1011001011000010100001000110010110001001001101110101001000010010

[Reqg_testbench/R04 0000000011110011111000110000000100000110110101111100110100001101

JReg_testbench/ROS 0011101100100011111100010111011000011110100011011100110100111101

JReg_testbench/R06 0111011011010100010101111110110101000110001011011111011110001100

JfReg_testbench/R0O7 0111110011111101111010011111100111100011001101110010010011000110

[Reg_testbench/R08 1110001011110111100001001100010111010101000100111101001010101010

JReg_testbench/R09 0111001010101111111101111110010110111011110100100111001001110111

JReg_testbench/R10 1000100100110010110101100001001001000111111011001101101110001111

JReg_testbench/R11 0111100100110000011010011111001011100111011101101001011011001110

[Reg_testbench/R12 1111010000000000011110101110100011100010110010100100111011000101

JReg_testbench/R 13 0010111001011000010010010101110011011110100011100010100010111101

JReg_testbench/R14 1001011010101011010110000010110110110010101001110010011001100101

JReg_testbench/R15 1011000111101111011000100110001100000101011100111000011100001010

fReg_testbench/R 16 110000000011101100100010100000000001000001100 10000 10000100 100000

JReg_testbench/R17 0101010101111000010001011010101011001110110011001100110010011101

JReg_testbench/R18 1100101100100000001111101001011010001001100000111011100000010011

JReg_testbench/R 19 1000011010111100001110000000110110101001101001111101011001010011

fReg_testbench/R20 0011010110011111110111010110101111101010101001100010101011010101

[Reg_testbench/R21 1000000100010111010010100000001011010111010101100011111010101110

J[Reqg_testbench/R22 0000111011111111111010010001110111100111110001010111001011001111

JReg_testbench/R23 0001000110000100010010010010001100000101000010010110010100001010

JfReg_testbench/R24 1110010101110011000010101100101010011110001100010100110000111100

[Reg_testbench/R25 0111100101101000101111011111001001000101001011100110000110001010

JReg_testbench/R26 0010000011000100101100110100000111101100010010110011010011011000

JReg_testbench/R27 0011110000100000111100110111100011000 100100010100001001010001001

JReg_testbench/R25 0111010111000101000011011110101101011011000000100110010110110110

[Reqg_testbench/R29 0110001101001011111110011100011001010111000101010001001110101110

J[Reg_testbench/R30 1101111001110101000000101011110000010101000011111101110100101010

JReg_testbench/R31 1000010111010111100110100000101110111000100101111011111001110001

645 ps.
Cursor 1

643 ps

Figure 2.2. Cristine's Register File Testbench Screenshot

Within the testbench, there was a random number generator, so we can make sure each register can be
written to when the write input is high. It also makes sure that each register can be read from. The fifth
line down shows when the write function is high and low. When it is high, you can see all the registers
(lines 9 to the end) are all being written to with different numbers. Since the numbers are showing up, it
also shows that the register files can be read from. Since none of the register files are being written to
when the write function is low, we can conclude that the write input is working properly. With all the
parts working individually, we can conclude that our register file works properly.

Computer Architecture Processor

2.3.2 Krutik

JReg_testbench/rdAddrA
J/Reg_testbench/rdAddrB
JReg_testbenchfwrAddr
JReg_testbenchfwrData
[Reg_testbench fwrite
[Reg_testbench/reset
[Reg_testbench/dk
[Reg_testbench/rdDataA
[Reg_testbench/rdDataB
[Reg_testbench/RO0
[Reg_testbench/R01
[Reg_testbench/R02
[Reg_testbench/R03
JReg_testhench/R04
[Reg_testhench/RO5
JReq_testbench/RO6
JReq_testbench/RO7
[Reg_testhench/R08
[Reg_testhench /R0
JReg_testhench/R10
[Reg_testbench/R11
[Reg_testbench/R12
JReg_testbench/R13
JReg_testbench/R14
JReg_testbench/R15
JReg_testbench/R16
JReg_testbench/R17
JReg_testbench/R18
JReg_testbench/R19
/Reg_testbench/R20
/Reg_testbench/R21
/Reg_testbench/R22
[Reg_testbench/R23
[Reg_testbench/R24
[Reg_testbench/R25
[Reg_testbench/R26
[Reg_testbench/R27
[Reg_testbench/R23
JReg_testhench/R29
JReg_testhench/R30
JReg_testbenchfR31

iﬂ Cursar 1

0000111011111111111010010001110111100111110001010111001011001111
0000111011111111111010010001110111100111110001010111001011001111
0001001000010101001101010010010011000000100010010101111010000001
1000010010000100110101100000100110110001111100000101011001100011
0000011010111001011110110000110101000110110111111001100110001101
101100101100001010000100011001011000100100110111010100 1000010010
0000000011110011111000110000000100000110110101111100110100001101
0011101100100011111100010111011000011110100011011100110100111101
0111011011010100010101111110110101000110001011011111011110001100
0111110011111101111010011111100111100011001101110010010011000110
1110001011110111100001001100010111010101000100111101001010101010
0111001010101111111101111110010110111011110100100111001001110111
1000100100110010110101100001001001000111111011001101101110001111
0111100100110000011010011111001011100111011101101001011011001110
1111010000000000011110101110100011100010110010100100111011000101
0010111001011000010010010101110011011110100011100010100010111101
1001011010101011010110000010110110110010101001110010011001100101
1011000111101111011000100110001100000101011100111000011100001010
1100000000111011001000101000000000010000011001000010000 100100000
0101010101111000010001011010101011001110110011001100110010011101
1100101100100000001111101001011010001001100000111011100000010011
1000011010111100001110000000110110101001101001111101011001010011
0011010110011111110111010110101111101010101001100010101011010101
1000000100010111010010100000001011010111010101100011111010101110
0000111011111111111010010001110111100111110001010111001011001111
0001000110000100010010010010001100000101000010010110010100001010
1110010101110011000010101100101010011110001100010100110000111100
0111100101101000101111011111001001000101001011100110000110001010
0010000011000100101100110100000111101100010010110011010011011000
00111100001000001111001101111000 11000100 100010100001001010001001
0111010111000101000011011110101101011011000000100110010110110110
0110001101001011111110011100011001010111000101010001001110101110
1101111001110101000000101011110000010101000011111101110100101010
1000010111010111100110100000101110111000100101111011111001110001

Register File Design | 8

00O OO OO0 000 OO OO OO OO
000CO 00O OO0 OO0 OO OO OO OO
I3Z)Z)DDZ)DD3DDZ)DZ)Z)DZ)Z)Z)3Z)Z)3DDDDDDZ)DIDZ)ZDZDDDDDDDDJDDDDDDDD [EREsIEaen
I33Z)DDZ)DD3Z)DZ)DZ)Z)DZ)Z)Z)3Z)Z)3DDDDDDZ)Z)DZ)DZ)Z)DZ)Z)Z)3DDDDDDDDDDDDDD_.IDDDDDDDD_
— 1 1 1 1 | - [[7 "7 "

|

Tj [T
OO OO0 OO0 OO OO OO OO
I:)DDZ)Z)DZ)DZ)D:)Z):)Z)Z):)Z)Z)Z)Z)Z)Z)Z)DZ)DDZ):)Z)D:DID:DDIDIDDDDDID:D AnaniRaaN

Figure 2.3. Krutik's Register File Testbench Screenshot

Similarly, to Cristine’s testbench simulation, the random number generator is used to write to the
registers using randomly generated values. The registers are being written to when the write input is
high, and the registers will stop taking data when the write input is low. Since the numbers are visible
for all registers, that means the read variables are working as well. The figure above is just the output
values being read from the register. When the registers are being read a constant line of zeros, that just
means the register has yet to be written to at that point in time. Every time the clock goes high the next
register will get data, as long as the write enable is high as well. This testbench is merely just writing to
and reading from the 64-bit registers.

Computer Architecture Processor Register File Design | 9

2.3.3 Logan

[Reg_testhench/rdaddra RIS IIENENIseEssRERIEsEsIEnEnIIseunIinesuians(snanisessiInann
[Req_testbench/rdAddrB BRI EIseessnasIssnsIsnEniIssEsisessilanss(euanesesieenm
JReg_testhench/wrAddr BRI SIIENESISeEsSRERISsESIENENIISeEnIINesuiansseuanIsessiinann
[Reg_testbench/wrbata BRSNS IssEssNENISsnsIERENIIseunINasuiianssieuaniseusiins!
[Req_testbench/urite - 1 T T 1

J/Reg_testhench/freset

[Reg_testhenchjdk L ULy L
JRea testhench/rdbataA | 110111100111010 100000010104 11460800 4010160001 11104 1404001404040 | S DO O OO O O OO OO OO
JReg_testbench/rdDatas | 1104121001110101000000103011130000010104000021151304 130300403010 | YO O OO O O OO OO
[Req_testbench/ROD [000100100001010100110 10100 1001001100000 100010010101111010000001

[Reg_testbench/RO1 | 1000010010000100110101100000100110110001111100000101011001100011

[Reg_testbench/R02 [0000011010111001011110110000110101000110110111111001100110001101

[Req_testbench/R03 [101100101100001010000 10001 1001011000100100110111010 1001000010010

[Reg_testbench/R04 [0000000011110011111000110000000100000110110101111100110100001101

[Req_testbench/RO5 [0011101100100011111100010111011000011110100011011100110100111101

/Reg_testbench/R0s [0111011011010100010101111110110101000110001011011111011110001100

[Reg_testbench/R07 [0111110011111101111010011111100111100011001101110010010011000110

[Req_testbench/RO [111000101111011110000100110001011101010100010011110 1001010101010

[Reg_testbench/R09 [0111001010101111111101111110010110111011110100 10011 1001001110111

[Req_testbench/R10 | 100010010011001011010110000100100100011111101100110110111000 1111

[Req_testbenchR11 [0111100100110000011010011111001011100111011101101001011011001110

[Reg_testbench/R12 [1111010000000000011110101110100011100010110010 100100111011000101

[Req_testbench/R13 [0010111001011000010010010101110011011110100011100010 100010111101

[Reg_testbench/R14 [1001011010101011010110000010110110110010101001110010011001100101

[Reg_testbench/R15 [1011000111101111011000100110001100000101011100111000011100001010

[Req_testbench/R16 | 11000000001110110010001010000000000 1000001100 10000 1000010000000

[Reg_testbench/R17 [0101010101111000010001011010101011001110110011001100110010011101

[Req_testbench/R18 [11001011001000000011111010010110100010011000001110111000000 10011

[Reg_testbench/R19 1000011010111100001110000000110110101001101001111101011001010011

[Reg_testbench/R20 [0011010110011111110111010110101111101010101001100010 101011010101

[Req_testbenchR2L | 1000000100010111010010100000001011010111010101100011111010101110

[Reg_testbench/R22 [0000111011111111111010010001110111100111110001010111001011001111

[Req_testbench/R23 [00010001100001000100100100 1000110000010 10000100101 10010100001010

[Req_testbench/R24 [1110010101110011000010101100101010011110001100010100110000111100

[Reg_testbench/R25 [01111001011010001011110111110010010001010010111001 0000110001010

[Req_testbench/R26 [0010000011000100101100110100000111101100010010110011010011011000

[Reg_testbench/R27 [0011110000100000111100110111100011000100100010 10000 1001010001001

[Reg_testbench/R28 [0111010111000101000011011110101101011011000000 1001 10010110110110

[Req_testbenchR23 [011000110100101111111001110001100101011100010101000 1001110101110

[Reg_testbench/R30 [1101111001110101000000101011110000010101000011111101110100101010

[Req_testbench/R3L [1000010111010111100110100000101110111000100101111011111001110001

Now 645ps

Figure 2.4. Logan's Register File Testbench Screenshot

As you can see in Figure 2.4 above, the testbench is storing and extracting data from the register file. To
test the register file with many different scenarios, a random number generator was created in the
testbench file. The random number generator was configured to generate 64-bit binary numbers and
write them into the 32 registers of the register file (numbered 0 through 31). Looking at the results on
the right side of the testbench, we can see the triangle of zeros on the left side of the output window.
Since all registers started with 64 zeros in them, this makes sense to see. Since only one register is
written at a time, we can see the triangle effect that advances down one step each time the clock goes
high. We can see that at once all the registers have been written, the write line is pulled to zero, and all
of the registers hold their data as they are supposed to.

Computer Architecture Processor ALU Design | 10

3 ALU Design
3.1 Figure of ALU

Ainvert Operation

Binvert Carryln

Result

450

CarryOut

Figure 3.1. General ALU Layout

3.2 Function Select Codes and RTL Operations

To understand what function to preform, the ALU needs to have its function select bits set by the
control unit. The 5-bit options below in Table 3.1 show the function select bits required for the desired
RTL operations in the right column to take place.

Table 3.1. Function selects codes and RTL Operations.

Function Select RTL Operation

01000 A+B

01001 A-B

11000 0

00000 A&B

00100 A|B

01100 A"B

11100 16'b1111111111111111
10000 A>>1

10100 A<<1

3.3 Description of Design and Optimization Steps

The processor’s arithmetic logic unit (ALU) is the heart of the processor. Its job is to perform the
requested mathematical operation provided by the programmer in assembly form. The ALU has two 64-
bit busses as inputs that are passed to it from the register file. To control the operation to perform with
the inputs, there is a 5-bit function select input. When processing the function select input, the

Computer Architecture Processor ALU Design | 11

processor uses the first three bits (bits 4:2) to determine which operation to perform. The last two bits
of the input (bits 1:0) are used denote whether the ALU needs to invert the A or B bus inputs.

The ALU has two outputs, the 64-bit output data bus and a 4-bit status output. The 64-bit output data
bus is routed to the write data bus of the register file, while the status signal is routed to the control
unit. As you can see in Table 3.2 below, the four status lines each have their own purpose, and are all
fed into the control unit.

Table 3.2. Status bit functions

Stat bit Signal Description

0 z (zero) the result from operation
is zero.

1 N (negative) indicates if the result
was negative.

2 C (Carry out) indicates overflow of
unsigned arithmetic.

3 Vv Indicated overflow of signed
arithmetic.

3.4 Testbench Design

The testbenches below showcase different functions of the ALU. Note that not all the functions that the
ALU can compute are shown below, however we have tried to provide some of the core functions in the
testbenches shown. Below is Table 3.3 which shows all of the logic operations that the ALU can
compute.

Table 3.3. List of necessary ALU operations

Arithmetic Logic Shift
F=A+1 F=0 F=A>>1 (shiftin a 0)
F=A+B F=A F=A<<1 (shiftin a 0)
F=A-B F=~A
F=A-1 F=A&B
F=-A F=A|B
F=A "B (XOR)
3.4.1 Cristine

JALU_TB/A |000000D00000000000C0001101 | (T
JALU_TB/B 0001
JALU_TBJFS

JALU_TB/Cin
JALU_TBJF
JALU_TB/stat

Figure 3.2. Cristine’s ALU Testbench

Computer Architecture Processor ALU Design | 12

The lines in order are variables A, B, FS (function select), Cin, F(output), stat, Cout. To determine if the
value is correct, you have to test all of the function select bits and test different values of A and B. For
the example that is selected on, A = 1101, B=1, FS=00100, Cin=1, F=1101, stat =0000 and Cout=0. The
function select bits are selected on the or function. This means is either A or B has a 1 value the output
will have the same output value. This is correct for our function since all of the positions with 1’s in it has
1. The stat being 0000 means that it does not meet any of the signal description; it is our default
function. It means that the result is not zero or negative and there is no overflow. This is true for this
case.

3.4.2 Krutik

o4 JALU_TB/A 001101
04 JAU_TER 1000110
& 4 /ALU_TBFS

4 JALU_TB/Cin o

o4 JALUTBF
B JALU_TE/stat
£ JALU_TB/Cout

Figure 3.3. Krutik's ALU Testbench

When FS is selected at 01000, this operation is A+B. A= 1101, and B = 0110. Theoretically, since this is a
64-bit number, there is no carry bit and the last 5 bits of the operation would result in 10011 when you

add A and B, and this is evident in the testbench simulation above. Since the result is not zero, negative,
and no overflow, the status signal is 0000. This testbench simulation shows that it is doing the required

functions.

3.4.3 Logan

B4 /AU_TB/A 001101
o4 /Au_TBB 0001 10
-4 /ALU_TBFS 01100

4 [ALU_TB/Cin 0
+ JALU_TBF 001011

o4 /ALU_TB/stat
5“4 /ALU_TB/Cout

Figure 3.4. Logan's ALU Testbench

In Figure 3.4 above, you can see that the ALU is preforming an XOR operation using data from a
simulated register file. Input A is set to 1101 and input B is set to 0110. Computing the XOR of these
two 4-bit numbers gives the result of 1011, which we can see the ALU reports on the “F” line above in
the grey region. The ALU also output the status as 0000, which is correct for this combination of inputs
and outputs. This shows that the ALU’s XOR function is working correctly. Other team members have
tested different functions of the ALU in their testbenches.

Computer Architecture Processor Memory Organization | 13

4 Memory Organization
4.1 Memory Address Spaces

datainpuls o o 20 o
wiile
A4oraLrank : : * : bullers

3 3 3
Bkl Ol
yeoedlloe 2
o f—— . »
" veoedlle 2
Addr.
N -
e— —
2:4
>) L =
wordlloe 1
b »
weordlloe O
: :
i » 2
“‘“'D Bullaiy

dala aulpuls L@m L—@u L@w.

Figure 4.1. Schematic of RAM

4.2 Design and Implementation

When RAM is placed into the top-level entity, it acts as a short-term data storage that you can write to.
The RAM stores the information that your computer is currently using. The bigger the RAM, the more
programs the computer can run since it can allocate more memory to it. For our specific RAM, the
memory is 255 bits with 64 different registers. It has a write function to prevent the function from being
written to and read from simultaneously.

4.3 Testbench

00000001
o

000100100001010100110101001001001 1000000 1000100101011 110100001

1
00000000000000000000000GA0000000000H0000NGA00)BA0000AN0N0N0O00D

Figure 4.2. RAM Testbench

To test the processor’s memory, we created a testbench that wrote and read random data to the RAM
to make sure that it was fully functional. One set of results can be seen above in Figure 4.2. The RAM
address to write to is incremented each clock cycle as you can see on the first line of the testbench. The
RAM data input line is connected to a 64-bit random number generator. The write line on the RAM is
pulled high, so each time we change the address and data, the data is written to the specified address.
We can verify that this is working by looking at the RAM output line. For the first clock cycle, we see a
red line — this is normal since there is nothing in the RAM at this point. The RAM is configured to output
values on the negative clock edge, while it writes values on the positive clock edge as it cannot do both

Computer Architecture Processor Memory Organization | 14

simultaneously, it will cause errors when reading and writing to the same memory address. After the
first negative clock edge, we can see that the output of the memory is what the input was before (in the
first case — all zeros). During the next clock cycle, the random number is changed, and once the clock
edge falls, you can see that the RAM reports the same random number on the output line.

Computer Architecture Processor Datapath | 15

5 Datapath

5.1 Figure of Instruction Register
IF Stage First Half of ID Stage

instruction
IF/ID]_I_) buffer
rROM | ! T _F----
or IRF ————= ____

L11C

Figure 5.1. Process of Instructor Register

5.2 Figure of Program Counter Design and Description

PC_IN [31:0) PROGRAM
COUNTER
PC_OUT[31:0] TOROM
PS[1:0]
PC4 [31:0] TO RAM or REG_FILE

00 HOLD PC <& pC

01 INCREMENT PC <@ PC+1

10 LOAD PC <& INPUT

11 OFFSET PC <& PC+INPUT

Figure 5.2. Diagram of Program Counter (Note all 32-bit inputs should be 64-bit)

The program counter is the portion of the processor that keeps track of what line of assembly in the
program is being executed. The program counter increments by 4 for each instruction it runs.

5.3 Figure of Datapath

FOSre

I Q
M
Add g
4 g L 1
RegWrite
i
Instruction [25-21] Read
Reod register 1 Fead Mermarite
u address Insteuction [20m16] Read data 3. AEUSIe L g
nstruction register 2
2701 1 o i e
(3203 " Wirite data 2 ¢ Address Read
N——— . X W reglster .3 data
RELLCTIon Instruetion {18-11] 1 x Vyrite i
meroTy | {Hgaz Registers 1
T Data
Reglst LN;;;: MEmory
instruction {15-0] 16 g | 32
extand MemRead
Inskruetion [5-0]

ALuop

Figure 5.3. ARM Processor Datapath

Computer Architecture Processor Datapath | 16

5.4 Control Word
assign {PS, DA, SA, SB, FS, regW, ramW, EN_MEM, EN_ALU, EN_B, EN_PC, selB, PCsel, SL} = controlWord;

Table 5.1. Control Signals, Their Function and What Each Value Does

Control Word Name Description Values
Portion
[30:29] PS Program Counter Control 00: PC <- PC

0l: PC <- PC + 4
10: PC <- in
11: PC <- PC + 4 +

in * 4
[28:24] DA Register Data Address 5-bit select for 32
(Write Register #) registers
[23:19] SA Register A Address 5-bit select for 32
(Read Register # A) registers
[18:14] SB Register B Address 5-bit select for 32
(Read Register # B) registers
[13:9] FS Function Select FS[0]: B Invert
FS[1]: A Invert
000XX: AND
001XX: OR
010XX: ADD

011XX: XOR
100XX: SHIFT LEFT
101XX: SHIFT RIGHT

[8] regw Write to Register O0: Don’t write
(Write) 1: Write
[7] ramw Write to RAM 0: Don’t write
(RAMWrite) 1: Write
[6] EN_MEM Enable RAM on Data Bus 0: Don’t use
1: Use
[5] EN_ALU Enable ALU on Data Bus 0: Don’t use
1: Use
[4] EN_B Enable Register B output on 0: Don’t use
Data Bus 1l: Use
[3] EN_PC | Enable PC+4 output on Data Bus | 0: Don’t use

1: Use

Computer Architecture Processor Datapath | 17

[2] selB Select Register B/ Literal K for | 0: Output B

ALU 1: Output K

[1] PCsel Select Register A/ Literal K for | 0: Output A

Program Counter 1: Output K

[0] SL Status Lines from ALU 0: Don’t use
1: Use

5.5 Description of Design Choices and Capabilities of Datapath

The Datapath is determined by the control word. Based on the control word, different values will be set
to all of the variables. It does this by accessing different modules within the program. This will allow to
processor to do operations like addition, branching and moving.

5.6 Testbench
We did not finish the control unit so we could not build a complete Datapath. But we did finish the
program counter, so here is a testbench for that.

JPC_TB/dock
[PC_TBjreset
PC_TB/pc_in
[PC_TB/ps

[PC_TB/pc_out TN 10 0 1 0 0 A O 1 O O O
[PC_TB/PC4 G A A 1 A O N A O O O O A

iE Cursor 1

Figure 5.4. Program counter testbench.

As you can see in Figure 5.4 above, the program counter is counting by 4 each time a clock cycle passes.
When the processor is reset, it clears out the program counter, so the code execution returns to the first
line.

Computer Architecture Processor Control Unit | 18

6 Control Unit
6.1 Figure(s) of Control unit design

Control Unit of a Basic Computer:

Instruction register (IR}

{ 15 |14 13 12 11-0]

Other Inputs

3xé
v decoder N
>
| 76543210
AN .
3
T T
- Control Logic Outputs
o Gates
>
3
>
T15 N
>
To N
11 e
15 14 210
4%16
decoder
A A A A

¢~ Increment (INR)
4BiiSequence g clear (CLR)
Counter
(sC)
q(— Clock

Figure 6.1. Control unit depiction

Computer Architecture Processor

6.2 State diagram of control unit

Figure 6.2. Control unit state diagram

6.3 Description of design approach
For each type data type, we created a table. Within each data type, there are different operations that
needed to be accomplished. For each one of those there was a column made. From there, each column
was filled with the values needed to achieve those.

Control Unit | 19

After all of the tables were filled, it was transferred to code. Each operation got their own module,
which would set the values needed to the respective variable.

6.4 Description of CU registers
Table 6.1. Control Signal Descriptions

Abbreviation

Meaning

PS Selecting which program counter, we are using.
DA Data within register a

SA Address of register a

SB Address of register b

FS Function select (operation of the ALU)

regW If you are writing to the registers

ramw If you are writing to the Ram

EN_MEM Enabling memory

EN_ALU Enabling the use of the ALU

EN B Enabling the use of b

EN_PC Enabling the program counter

selB If you are selecting register b o r the immediate generator

Computer Architecture Processor

Control Unit | 20

PCsel Program counter select
SL Status of ALU
nextsS The next state of the control unit

6.5 Description of testing done and testbench design.

For the test bench, we tested each control word individually. Mathematically, we can determine what
the output values would be from the input values. Our hand calculations would then be compared to

the outcome. If they were the same, then we knew it was correct.

Computer Architecture Processor

/7 CPU

7.1 Figure of Datapath, control unit, and memories.

Read
address

Instruetion [20-1 &)

Instuction| |

[#1-0]
Instruction Instruction
memony 18-11]

Read
Register1

Read
Read Data 1
Register2

Wiite Read
Register Data 2

"é“i“‘: Register File

Instruction [{ 5.0

» Slgn Exend |

[N

Instrustion [15-0]

Read
Address d
Daia Memory
Wirite
data

oz

Figure 7.1. CPU Block Diagram

7.2 Description of testing done to validate the CPU and the testbench design.

CPU | 21

The best way for us to test the CPU is for us to write a meaningful program in assembly and run it on the

CPU. Since we were unable to complete the datapath, we were unable to run code on our CPU.

Computer Architecture Processor

8 Instruction Set

8.1 Section for common Instructions:

8.1.1 Table of opcode field descriptions / terminology
Table 8.1. Assembly Instructions to Opcode

OFODDE IR
me et
ii 100500130060 20k
11 11050013000 LB
1w 1001000100 el
10 11010 SUBI
11 1012101100 SODE
11 1112101100 SUBE
1 101100010 AODBIS
12 11100y EF-T
11 111810 Eun]
11 11351000010 oL
11 10191 003000 SUR
11 BHERRE: - BT LBUE
11 CA151000000 STUAR
i1 [R E R -] LbuaH
i1 [R R o] Eaiil
11 CR191002010 LpLisR
Ll FELEE T WIYE
L] BER R T
11 1000 010000 AL
il BLR L= iR i) SRR
11 1100E 010000 ECR
i JURTECUIRG AR
10 i01400iccd ORE
1w FREeipte]]
11 11100 010000 DS
10 1111001000 EADIS
i1 BEE TR T] LR
i1 1103013011 LT
B BLERA-v] L
] FHERF Bl pi-1ird
& 0810400 Besnd
B (R B
11 FELHGRT.] i
5 10080 B

Instruction Set | 22

Computer Architecture Processor Instruction Set | 23

8.1.2 Figure of instruction formats

8 8 8 8

R-format | opcode | it | rd l rs |
8 8 8 8

S-format | opcode | it | rd | shamt |
8 8 16

I-format | opcode | rt | imm |
8 24

J-format | opcode | addr |
8 8 8 3 3 2

T-format | opcode | rt rd | dasb [tsb | rsv. |

8 24
B-format | opcode I ciocc |

Figure 8.1. Bitfield addresses for different instruction formats

8.1.3 Table of instruction set summary
Table 8.2. Instruction Set Summary

Name Explanations of instruction fields
opcode Primary opcode
ciocc Custom instruction occurrence
r[s|t|d] Register source/transfer/destination operand
rt Register transfer operand
rd Register destination operand
[d|t}sb Destination/transfer register sign (1-bit) and bitwidth (2-bits)
addr 24-bit PC-relative/absolute program address
imm 16-bit immediate
shamt 8-bit (lower 5-bits used) shift amount

8.1.4 Table of instructions and control words
Table 8.3. Branch Control Word

B BL B.cond | CBZ CBNZ BR
PS 11 11
DA 11111 | 11111 | xxxxx XXXXX XXXXX XXXXX
SA 11111 | 11111 | xxxxx XXXXX XXXXX XXXXX
SB 11111 | 11111 | xxxxx XXXXX XXXXX XXXXX
FS 00000 | 00000 | 00000 | 00000 | 00000 | 00000
regW 0 1 0 1 1 0
ramw 0 0 1 1 1 1
EN_MEM | O 0 0 0 0 0

Computer Architecture Processor

Instruction Set | 24

EN_ALU 0 1 1 1 1 1
EN_B 0 0 0 1 1 1
EN_PC 0 1 1 0 0 0
selB 0 0 0 1 1 0
PCsel 1 1 0 0 0 0
SL 0 0 1 1 0 0
nextS 00 00 00 00 00 00
Table 8.4. Arithmetic Control Word
Add Sub Adds Subs And ORR EOR ANDS LSR LSL
PS 01 01 01 01 01
DA XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX
SA XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX
SB XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX
FS 01000 | 01001 | 01000 | 01001 | OOOOO | 00100 | 00100 | OOOOO | 01011 | 01011
regW 1 1 1 1 1 1 1 1 1 1
ramW | O 0 0 0 0 0 0 0 0 0
EN.M |0 0 0 0 0 0 0 0 0 0
EM
EN_AL |1 1 1 1 1 1 1 1 1 1
U
EN_B 1 1 0 0 1 1 1 0 1 1
EN_PC | 1 1 1 1 1 1 1 1 1 1
selB 0 0 0 0 0 0 0 0 0 0
PCsel
SL 1 1 1 1 1 1 1 1 1 1
nextS 00 00 01 01 00 00 00 00 00 00
Table 8.5. Arithmetic Immediate Control Word
Addi Subi Addis Subis
PS 01 01 01 01
DA XXXXX XXXXX XXXXX XXXXX
SA XXXXX XXXXX XXXXX XXXXX
SB XXXXX XXXXX XXXXX XXXXX
FS 01000 | 01001 | 01000 | 01001
regW 1 1 1 1
ramwW 0 0 0 0
EN_MEM | O 0 0 0
EN_ALU 1 1 1 1
EN_B 1 1 1 1
EN_PC 1 1 1 1
selB 0 0 0 0
PCsel 0 0 0 0

Computer Architecture Processor

SL

10

10

10

10

nextS

01

00

01

00

Table 8.6. Logical Immediate Control Word

ANDI ORI EORI ANDIS
PS 01
DA XXXXX
SA XXXXX
SB XXXXX
FS 00000
regW 1
ramW 0
EN_MEM | O
EN_ALU 1
EN_B 0
EN_PC 1
selB 0
PCsel
SL 1 1 1 1
nextS 00 00 01 11

Table 8.7. Wide Immediate Control Word

MOVZ

MOVK

PS

01

01

DA

XXXXX

XXXXX

SA

XXXXX

XXXXX

SB

XXXXX

XXXXX

FS

0100

0100

regW

ramwWw

EN_MEM

EN_ALU

EN_B

EN_PC

selB

PCsel

SL

olo|lr| |k kr|r|lolo|+

OlR|R|R|Rk|lO|lO|FR

nextS

o
=

o
[y

Table 8.8. Data Transfer Control Word

STUR

LDUR

PS

11

11

Instruction Set | 25

Computer Architecture Processor

Instruction Set | 26

DA XXXXX XXXXX
SA XXXXX XXXXX
SB XXXXX XXXXX
FS XXXXX XXXXX
regW 1 1
ramw 1 1
EN_MEM | O 0
EN_ALU | O 0
EN_B 0 0
EN_PC 0 0
selB 0 0
PCsel 0 1

SL 0 0
nextS 01 01

8.1.5 Detailed instruction set list and descriptions
Table 8.9. Instruction Categories and Operations

Category

Operations

Branch

B - Branch

Branch with Link

BL - Branch with Link

Branch Conditional

B.cond - Branch Conditionally

Compare & Branch

CBZ - Compare & Branchon =0
CBNZ - Compare & Branch on not =0

Branch to Register

BR - Branch to Register

Arithmetic

ADD - Add

SUB - Subtract

ADDS - Add & Set Flags

SUBS - Subtract & Set Flags
AND - Logic AND

ORR - Logic OR

EOR - Logic XOR

ANDS - Logic AND & Set Flags
LSR - Logical Shift Right

LSL - Logical Shift Left

Immediate Arithmetic

ADDI - Add Immediate

SUBI - Subtract Immediate

ADDIS - Add Immediate & Set Flags
SUBIS - Subtract Immediate & Set Flags

Immediate Logic

ANDI - Logic AND Immediate

ORRI - Logic OR Immediate

EORI - Logic XOR Immediate

ANDIS - Logic AND Immediate & Set Flags

Computer Architecture Processor Instruction Set | 27

MOVZ - Move Wide with Zero
MOVK - Move Wide with Keep
STUR - Store Register
LDUR - Load Register

Wide Immediate

Data Transfer

MOVZ moves an immediate value (16-bit value) to a register, and all the other bits outside the
immediate value are set to Zero.

MOVK moves an immediate value (16-bit value) to a register, and all the other bits outside the
immediate value remain the same.

Computer Architecture Processor Programming Examples | 28

9 Programming Examples

9.1 Section for each team member’s program
Each member worked on the code together to make one collective script.

9.1.1 Table of assembly instructions and binary instruction words
Refer to the tables within section 8.1.4.

9.1.2 Description of what your program does
The program takes in a control word which dictates the Datapath. This will determine what signals are
off and on. From there values are added into the registers and the operation is done within the ALU.

Computer Architecture Processor Performance | 29

10 Performance

Performance can be improved by allowing the length of the control word to be changed. If it changes,
then the time it takes for the program to run would be shortened. The same goes for the ALU and
Register file. If the number within the files are small enough to be represented by a smaller number of
bits, then it should be. Adding a pipelined datapath would also increase the overall speed of the
processor due to not waiting for each instruction to make it all of the way thorough the CPU. We could
also add some peripherals for more versatility in real world applications.

Computer Architecture Processor Errata | 30

11 Errata

11.1 Listing of features that do not work as expected.
1. Control unit
2. Datapath

11.2 Description with as much detail as is known about why these problems exist.

The control unit and Datapath were a part of the same lab. The group was having trouble determining
the values for the different variables such as PS and DA. We could not figure out all the values for each
one. This caused the code to not function properly. In the end, we did not have enough time to work out
all the different values, so that the control unit and Datapath could properly work.

