

Processor Datasheet

 Logan Greif, Krutik Shah, Cristine Le Ny

Computer Architecture

5/10/21

Computer Architecture Processor Overview of Features | 1

Overview of Features

• 32-bit architecture

• 32 x 64-bit general purpose registers

• 255 x 64-bit data memory registers

Computer Architecture Processor Table of Contents | 2

Table of Contents
Overview of Features .. 1

Table of Contents .. 2

List of Figures .. 3

List of Tables ... 4

1 Architecture Overview .. 5

1.1 Simplified Block Diagram .. 5

1.2 Description of Architecture Features .. 5

1.2.1 Program Counter ... 5

1.2.2 Instruction Memory .. 5

1.2.3 Registers .. 5

1.2.4 ALU .. 5

1.2.5 Data Memory .. 5

2 Register File Design ... 6

2.1 Figure of Register File Design .. 6

2.2 Description of Design .. 6

2.3 Testbench Screenshots and Description ... 7

2.3.1 Cristine .. 7

2.3.2 Krutik ... 8

2.3.3 Logan ... 9

3 ALU Design .. 10

3.1 Figure of ALU ... 10

3.2 Function Select Codes and RTL Operations .. 10

3.3 Description of Design and Optimization Steps ... 10

3.4 Testbench Design .. 11

3.4.1 Cristine .. 11

3.4.2 Krutik ... 12

3.4.3 Logan ... 12

4 Memory Organization ... 13

4.1 Memory Address Spaces ... 13

4.2 Design and Implementation .. 13

4.3 Testbench .. 13

5 Datapath ... 15

Computer Architecture Processor List of Figures | 3

5.1 Figure of Instruction Register.. 15

5.2 Figure of Program Counter Design and Description ... 15

5.3 Figure of Datapath .. 15

5.4 Control Word .. 16

5.5 Description of Design Choices and Capabilities of Datapath .. 17

5.6 Testbench .. 17

6 Control Unit ... 18

6.1 Figure(s) of Control unit design .. 18

6.2 State diagram of control unit .. 19

6.3 Description of design approach .. 19

6.4 Description of CU registers ... 19

6.5 Description of testing done and testbench design. .. 20

7 CPU .. 21

7.1 Figure of Datapath, control unit, and memories. ... 21

7.2 Description of testing done to validate the CPU and the testbench design. 21

8 Instruction Set ... 22

8.1 Section for common Instructions: ... 22

8.1.1 Table of opcode field descriptions / terminology ... 22

8.1.2 Figure of instruction formats .. 23

8.1.3 Table of instruction set summary ... 23

8.1.4 Table of instructions and control words ... 23

8.1.5 Detailed instruction set list and descriptions ... 26

9 Programming Examples .. 28

9.1 Section for each team member’s program ... 28

9.1.1 Table of assembly instructions and binary instruction words .. 28

9.1.2 Description of what your program does ... 28

10 Performance ... 29

11 Errata ... 30

11.1 Listing of features that do not work as expected. .. 30

11.2 Description with as much detail as is known about why these problems exist. 30

List of Figures
Figure 1.1. Simplified block diagram of processor .. 5

Computer Architecture Processor List of Tables | 4

Figure 2.1. Register file block diagram. ... 6

Figure 2.2. Cristine's Register File Testbench Screenshot .. 7

Figure 2.3. Krutik's Register File Testbench Screenshot ... 8

Figure 2.4. Logan's Register File Testbench Screenshot ... 9

Figure 3.1. General ALU Layout .. 10

Figure 3.2. Cristine’s ALU Testbench... 11

Figure 3.3. Krutik's ALU Testbench ... 12

Figure 3.4. Logan's ALU Testbench ... 12

Figure 4.1. Schematic of RAM ... 13

Figure 4.2. RAM Testbench ... 13

Figure 5.1. Process of Instructor Register ... 15

Figure 5.2. Diagram of Program Counter (Note all 32-bit inputs should be 64-bit) 15

Figure 5.3. ARM Processor Datapath .. 15

Figure 5.4. Program counter testbench. ... 17

Figure 6.1. Control unit depiction ... 18

Figure 6.2. Control unit state diagram .. 19

Figure 7.1. CPU Block Diagram .. 21

Figure 8.1. Bitfield addresses for different instruction formats ... 23

List of Tables
Table 3.1. Function selects codes and RTL Operations. .. 10

Table 3.2. Status bit functions .. 11

Table 3.3. List of necessary ALU operations ... 11

Table 5.1. Control Signals, Their Function and What Each Value Does .. 16

Table 6.1. Control Signal Descriptions .. 19

Table 8.1. Assembly Instructions to Opcode .. 22

Table 8.2. Instruction Set Summary .. 23

Table 8.3. Branch Control Word ... 23

Table 8.4. Arithmetic Control Word .. 24

Table 8.5. Arithmetic Immediate Control Word ... 24

Table 8.6. Logical Immediate Control Word ... 25

Table 8.7. Wide Immediate Control Word .. 25

Table 8.8. Data Transfer Control Word ... 25

Table 8.9. Instruction Categories and Operations .. 26

Computer Architecture Processor Architecture Overview | 5

1 Architecture Overview

1.1 Simplified Block Diagram

Figure 1.1. Simplified block diagram of processor

1.2 Description of Architecture Features

1.2.1 Program Counter
The PC is the program counter. The program counter counts by 4 for each instruction the processor

executes. The program counter is how the processor knows what line of assembly to execute at any

given time.

1.2.2 Instruction Memory
Instruction memory is where you write to/load the information into the register file. This may include

changing the value of a register of moving the value of one register to another.

1.2.3 Registers
A register is temporary memory. For the register file, you can either write or read the data that it within

each individual register. In total there is 32 x 64-bit registers.

1.2.4 ALU
The arithmetic logic unit (ALU) is the place where all the arithmetic and logic operations happen. The

inputs of the ALU are the specific registers that were selected from the register file.

1.2.5 Data Memory
The data memory is another source to store memory. For our design, the data memory is our RAM file.

Computer Architecture Processor Register File Design | 6

2 Register File Design

2.1 Figure of Register File Design

Figure 2.1. Register file block diagram.

2.2 Description of Design
This processor contains a register file housing 32 registers, each with 64 bits of memory. This processor’s

register file has two read busses, as well as one writes bus. To read data from the register file, the read

address lines (rdAddrA and rdAddrB) need to be set to the 5-bit binary address of the register for which

you wish to read from. Data from the registers will be made available to the ALU on the data output

busses rdDataA and rdDataB. To write to the register file, the 5 bits write address (wrAddr) needs to be

configured to the register number you wish to write to. The 64 bits of data to write will need to be

present and stable on the write data bus (wrData), the write enable will need to be high, and on the

next clock pulse, the data will be written to the selected register. All of the output and input busses to

the register file are routed to the ALU, while the select addresses are routed to the control unit.

Computer Architecture Processor Register File Design | 7

2.3 Testbench Screenshots and Description

2.3.1 Cristine

Figure 2.2. Cristine's Register File Testbench Screenshot

Within the testbench, there was a random number generator, so we can make sure each register can be

written to when the write input is high. It also makes sure that each register can be read from. The fifth

line down shows when the write function is high and low. When it is high, you can see all the registers

(lines 9 to the end) are all being written to with different numbers. Since the numbers are showing up, it

also shows that the register files can be read from. Since none of the register files are being written to

when the write function is low, we can conclude that the write input is working properly. With all the

parts working individually, we can conclude that our register file works properly.

Computer Architecture Processor Register File Design | 8

2.3.2 Krutik

Figure 2.3. Krutik's Register File Testbench Screenshot

Similarly, to Cristine’s testbench simulation, the random number generator is used to write to the

registers using randomly generated values. The registers are being written to when the write input is

high, and the registers will stop taking data when the write input is low. Since the numbers are visible

for all registers, that means the read variables are working as well. The figure above is just the output

values being read from the register. When the registers are being read a constant line of zeros, that just

means the register has yet to be written to at that point in time. Every time the clock goes high the next

register will get data, as long as the write enable is high as well. This testbench is merely just writing to

and reading from the 64-bit registers.

Computer Architecture Processor Register File Design | 9

2.3.3 Logan

Figure 2.4. Logan's Register File Testbench Screenshot

As you can see in Figure 2.4 above, the testbench is storing and extracting data from the register file. To

test the register file with many different scenarios, a random number generator was created in the

testbench file. The random number generator was configured to generate 64-bit binary numbers and

write them into the 32 registers of the register file (numbered 0 through 31). Looking at the results on

the right side of the testbench, we can see the triangle of zeros on the left side of the output window.

Since all registers started with 64 zeros in them, this makes sense to see. Since only one register is

written at a time, we can see the triangle effect that advances down one step each time the clock goes

high. We can see that at once all the registers have been written, the write line is pulled to zero, and all

of the registers hold their data as they are supposed to.

Computer Architecture Processor ALU Design | 10

3 ALU Design

3.1 Figure of ALU

Figure 3.1. General ALU Layout

3.2 Function Select Codes and RTL Operations
To understand what function to preform, the ALU needs to have its function select bits set by the

control unit. The 5-bit options below in Table 3.1 show the function select bits required for the desired

RTL operations in the right column to take place.

Table 3.1. Function selects codes and RTL Operations.

Function Select RTL Operation

01000 A+B

01001 A-B

11000 0

00000 A&B

00100 A|B

01100 A^B

11100 16’b1111111111111111

10000 A>>1

10100 A<<1

3.3 Description of Design and Optimization Steps
The processor’s arithmetic logic unit (ALU) is the heart of the processor. Its job is to perform the

requested mathematical operation provided by the programmer in assembly form. The ALU has two 64-

bit busses as inputs that are passed to it from the register file. To control the operation to perform with

the inputs, there is a 5-bit function select input. When processing the function select input, the

Computer Architecture Processor ALU Design | 11

processor uses the first three bits (bits 4:2) to determine which operation to perform. The last two bits

of the input (bits 1:0) are used denote whether the ALU needs to invert the A or B bus inputs.

The ALU has two outputs, the 64-bit output data bus and a 4-bit status output. The 64-bit output data

bus is routed to the write data bus of the register file, while the status signal is routed to the control

unit. As you can see in Table 3.2 below, the four status lines each have their own purpose, and are all

fed into the control unit.

Table 3.2. Status bit functions

Stat bit Signal Description

0 Z (zero) the result from operation
is zero.

1 N (negative) indicates if the result
was negative.

2 C (Carry out) indicates overflow of
unsigned arithmetic.

3 V Indicated overflow of signed
arithmetic.

3.4 Testbench Design
The testbenches below showcase different functions of the ALU. Note that not all the functions that the

ALU can compute are shown below, however we have tried to provide some of the core functions in the

testbenches shown. Below is Table 3.3 which shows all of the logic operations that the ALU can

compute.

Table 3.3. List of necessary ALU operations

3.4.1 Cristine

Figure 3.2. Cristine’s ALU Testbench

Computer Architecture Processor ALU Design | 12

The lines in order are variables A, B, FS (function select), Cin, F(output), stat, Cout. To determine if the

value is correct, you have to test all of the function select bits and test different values of A and B. For

the example that is selected on, A = 1101, B=1, FS=00100, Cin=1, F=1101, stat =0000 and Cout=0. The

function select bits are selected on the or function. This means is either A or B has a 1 value the output

will have the same output value. This is correct for our function since all of the positions with 1’s in it has

1. The stat being 0000 means that it does not meet any of the signal description; it is our default

function. It means that the result is not zero or negative and there is no overflow. This is true for this

case.

3.4.2 Krutik

Figure 3.3. Krutik's ALU Testbench

When FS is selected at 01000, this operation is A+B. A = 1101, and B = 0110. Theoretically, since this is a

64-bit number, there is no carry bit and the last 5 bits of the operation would result in 10011 when you

add A and B, and this is evident in the testbench simulation above. Since the result is not zero, negative,

and no overflow, the status signal is 0000. This testbench simulation shows that it is doing the required

functions.

3.4.3 Logan

Figure 3.4. Logan's ALU Testbench

In Figure 3.4 above, you can see that the ALU is preforming an XOR operation using data from a

simulated register file. Input A is set to 1101 and input B is set to 0110. Computing the XOR of these

two 4-bit numbers gives the result of 1011, which we can see the ALU reports on the “F” line above in

the grey region. The ALU also output the status as 0000, which is correct for this combination of inputs

and outputs. This shows that the ALU’s XOR function is working correctly. Other team members have

tested different functions of the ALU in their testbenches.

Computer Architecture Processor Memory Organization | 13

4 Memory Organization

4.1 Memory Address Spaces

Figure 4.1. Schematic of RAM

4.2 Design and Implementation
When RAM is placed into the top-level entity, it acts as a short-term data storage that you can write to.

The RAM stores the information that your computer is currently using. The bigger the RAM, the more

programs the computer can run since it can allocate more memory to it. For our specific RAM, the

memory is 255 bits with 64 different registers. It has a write function to prevent the function from being

written to and read from simultaneously.

4.3 Testbench

Figure 4.2. RAM Testbench

To test the processor’s memory, we created a testbench that wrote and read random data to the RAM

to make sure that it was fully functional. One set of results can be seen above in Figure 4.2. The RAM

address to write to is incremented each clock cycle as you can see on the first line of the testbench. The

RAM data input line is connected to a 64-bit random number generator. The write line on the RAM is

pulled high, so each time we change the address and data, the data is written to the specified address.

We can verify that this is working by looking at the RAM output line. For the first clock cycle, we see a

red line – this is normal since there is nothing in the RAM at this point. The RAM is configured to output

values on the negative clock edge, while it writes values on the positive clock edge as it cannot do both

Computer Architecture Processor Memory Organization | 14

simultaneously, it will cause errors when reading and writing to the same memory address. After the

first negative clock edge, we can see that the output of the memory is what the input was before (in the

first case – all zeros). During the next clock cycle, the random number is changed, and once the clock

edge falls, you can see that the RAM reports the same random number on the output line.

Computer Architecture Processor Datapath | 15

5 Datapath

5.1 Figure of Instruction Register

Figure 5.1. Process of Instructor Register

5.2 Figure of Program Counter Design and Description

Figure 5.2. Diagram of Program Counter (Note all 32-bit inputs should be 64-bit)

The program counter is the portion of the processor that keeps track of what line of assembly in the

program is being executed. The program counter increments by 4 for each instruction it runs.

5.3 Figure of Datapath

Figure 5.3. ARM Processor Datapath

Computer Architecture Processor Datapath | 16

5.4 Control Word
assign {PS, DA, SA, SB, FS, regW, ramW, EN_MEM, EN_ALU, EN_B, EN_PC, selB, PCsel, SL} = controlWord;

Table 5.1. Control Signals, Their Function and What Each Value Does

Control Word
Portion

Name Description Values

[30:29] PS Program Counter Control 00: PC <- PC
01: PC <- PC + 4
10: PC <- in
11: PC <- PC + 4 +

in * 4

[28:24] DA Register Data Address
(Write Register #)

5-bit select for 32

registers

[23:19] SA Register A Address
(Read Register # A)

5-bit select for 32

registers

[18:14] SB Register B Address
(Read Register # B)

5-bit select for 32

registers

[13:9] FS Function Select FS[0]: B Invert
FS[1]: A Invert
000XX: AND
001XX: OR
010XX: ADD
011XX: XOR
100XX: SHIFT LEFT
101XX: SHIFT RIGHT

[8] regW Write to Register
(Write)

0: Don’t write
1: Write

[7] ramW Write to RAM
(RAMWrite)

0: Don’t write
1: Write

[6] EN_MEM Enable RAM on Data Bus 0: Don’t use
1: Use

[5] EN_ALU Enable ALU on Data Bus 0: Don’t use
1: Use

[4] EN_B Enable Register B output on
Data Bus

0: Don’t use
1: Use

[3] EN_PC Enable PC+4 output on Data Bus 0: Don’t use
1: Use

Computer Architecture Processor Datapath | 17

[2] selB Select Register B / Literal K for
ALU

0: Output B
1: Output K

[1] PCsel Select Register A / Literal K for
Program Counter

0: Output A
1: Output K

[0] SL Status Lines from ALU 0: Don’t use
1: Use

5.5 Description of Design Choices and Capabilities of Datapath
The Datapath is determined by the control word. Based on the control word, different values will be set

to all of the variables. It does this by accessing different modules within the program. This will allow to

processor to do operations like addition, branching and moving.

5.6 Testbench
We did not finish the control unit so we could not build a complete Datapath. But we did finish the

program counter, so here is a testbench for that.

Figure 5.4. Program counter testbench.

As you can see in Figure 5.4 above, the program counter is counting by 4 each time a clock cycle passes.

When the processor is reset, it clears out the program counter, so the code execution returns to the first

line.

Computer Architecture Processor Control Unit | 18

6 Control Unit

6.1 Figure(s) of Control unit design

Figure 6.1. Control unit depiction

Computer Architecture Processor Control Unit | 19

6.2 State diagram of control unit

Figure 6.2. Control unit state diagram

6.3 Description of design approach
For each type data type, we created a table. Within each data type, there are different operations that

needed to be accomplished. For each one of those there was a column made. From there, each column

was filled with the values needed to achieve those.

After all of the tables were filled, it was transferred to code. Each operation got their own module,

which would set the values needed to the respective variable.

6.4 Description of CU registers
Table 6.1. Control Signal Descriptions

Abbreviation Meaning

PS Selecting which program counter, we are using.

DA Data within register a

SA Address of register a

SB Address of register b

FS Function select (operation of the ALU)

regW If you are writing to the registers

ramW If you are writing to the Ram

EN_MEM Enabling memory

EN_ALU Enabling the use of the ALU

EN_B Enabling the use of b

EN_PC Enabling the program counter

selB If you are selecting register b o r the immediate generator

Computer Architecture Processor Control Unit | 20

PCsel Program counter select

SL Status of ALU

nextS The next state of the control unit

6.5 Description of testing done and testbench design.
For the test bench, we tested each control word individually. Mathematically, we can determine what

the output values would be from the input values. Our hand calculations would then be compared to

the outcome. If they were the same, then we knew it was correct.

Computer Architecture Processor CPU | 21

7 CPU

7.1 Figure of Datapath, control unit, and memories.

Figure 7.1. CPU Block Diagram

7.2 Description of testing done to validate the CPU and the testbench design.
The best way for us to test the CPU is for us to write a meaningful program in assembly and run it on the

CPU. Since we were unable to complete the datapath, we were unable to run code on our CPU.

Computer Architecture Processor Instruction Set | 22

8 Instruction Set

8.1 Section for common Instructions:

8.1.1 Table of opcode field descriptions / terminology
Table 8.1. Assembly Instructions to Opcode

Computer Architecture Processor Instruction Set | 23

8.1.2 Figure of instruction formats

Figure 8.1. Bitfield addresses for different instruction formats

8.1.3 Table of instruction set summary
Table 8.2. Instruction Set Summary

8.1.4 Table of instructions and control words
Table 8.3. Branch Control Word

 B BL B.cond CBZ CBNZ BR

PS 11 11

DA 11111 11111 xxxxx xxxxx xxxxx xxxxx

SA 11111 11111 xxxxx xxxxx xxxxx xxxxx

SB 11111 11111 xxxxx xxxxx xxxxx xxxxx

FS 00000 00000 00000 00000 00000 00000

regW 0 1 0 1 1 0

ramW 0 0 1 1 1 1

EN_MEM 0 0 0 0 0 0

Computer Architecture Processor Instruction Set | 24

EN_ALU 0 1 1 1 1 1

EN_B 0 0 0 1 1 1

EN_PC 0 1 1 0 0 0

selB 0 0 0 1 1 0

PCsel 1 1 0 0 0 0

SL 0 0 1 1 0 0

nextS 00 00 00 00 00 00

Table 8.4. Arithmetic Control Word

 Add Sub Adds Subs And ORR EOR ANDS LSR LSL

PS 01 01 01 01 01

DA xxxxx xxxxx xxxxx xxxxx xxxxx xxxxx xxxxx xxxxx xxxxx xxxxx

SA xxxxx xxxxx xxxxx xxxxx xxxxx xxxxx xxxxx xxxxx xxxxx xxxxx

SB xxxxx xxxxx xxxxx xxxxx xxxxx xxxxx xxxxx xxxxx xxxxx xxxxx

FS 01000 01001 01000 01001 00000 00100 00100 00000 01011 01011

regW 1 1 1 1 1 1 1 1 1 1

ramW 0 0 0 0 0 0 0 0 0 0

EN_M
EM

0 0 0 0 0 0 0 0 0 0

EN_AL
U

1 1 1 1 1 1 1 1 1 1

EN_B 1 1 0 0 1 1 1 0 1 1

EN_PC 1 1 1 1 1 1 1 1 1 1

selB 0 0 0 0 0 0 0 0 0 0

PCsel

SL 1 1 1 1 1 1 1 1 1 1

nextS 00 00 01 01 00 00 00 00 00 00

Table 8.5. Arithmetic Immediate Control Word

 Addi Subi Addis Subis

PS 01 01 01 01

DA xxxxx xxxxx xxxxx xxxxx

SA xxxxx xxxxx xxxxx xxxxx

SB xxxxx xxxxx xxxxx xxxxx

FS 01000 01001 01000 01001

regW 1 1 1 1

ramW 0 0 0 0

EN_MEM 0 0 0 0

EN_ALU 1 1 1 1

EN_B 1 1 1 1

EN_PC 1 1 1 1

selB 0 0 0 0

PCsel 0 0 0 0

Computer Architecture Processor Instruction Set | 25

SL 10 10 10 10

nextS 01 00 01 00

Table 8.6. Logical Immediate Control Word

 ANDI ORI EORI ANDIS

PS 01

DA xxxxx

SA xxxxx

SB xxxxx

FS 00000

regW 1

ramW 0

EN_MEM 0

EN_ALU 1

EN_B 0

EN_PC 1

selB 0

PCsel

SL 1 1 1 1

nextS 00 00 01 11

Table 8.7. Wide Immediate Control Word

 MOVZ MOVK

PS 01 01

DA xxxxx xxxxx

SA xxxxx xxxxx

SB xxxxx xxxxx

FS 0100 0100

regW 1 1

ramW 0 0

EN_MEM 0 0

EN_ALU 1 1

EN_B 1 1

EN_PC 1 1

selB 1 1

PCsel 0 1

SL 0 0

nextS 01 01

Table 8.8. Data Transfer Control Word

 STUR LDUR

PS 11 11

Computer Architecture Processor Instruction Set | 26

DA Xxxxx Xxxxx

SA Xxxxx xxxxx

SB xxxxx Xxxxx

FS xxxxx xxxxx

regW 1 1

ramW 1 1

EN_MEM 0 0

EN_ALU 0 0

EN_B 0 0

EN_PC 0 0

selB 0 0

PCsel 0 1

SL 0 0

nextS 01 01

8.1.5 Detailed instruction set list and descriptions
Table 8.9. Instruction Categories and Operations

Category Operations

Branch B - Branch

Branch with Link BL - Branch with Link

Branch Conditional B.cond - Branch Conditionally

Compare & Branch
CBZ - Compare & Branch on = 0
CBNZ - Compare & Branch on not = 0

Branch to Register BR - Branch to Register

Arithmetic

ADD - Add
SUB - Subtract
ADDS - Add & Set Flags
SUBS - Subtract & Set Flags
AND - Logic AND
ORR - Logic OR
EOR - Logic XOR
ANDS - Logic AND & Set Flags
LSR - Logical Shift Right
LSL - Logical Shift Left

Immediate Arithmetic

ADDI - Add Immediate
SUBI - Subtract Immediate
ADDIS - Add Immediate & Set Flags
SUBIS - Subtract Immediate & Set Flags

Immediate Logic

ANDI - Logic AND Immediate
ORRI - Logic OR Immediate
EORI - Logic XOR Immediate
ANDIS - Logic AND Immediate & Set Flags

Computer Architecture Processor Instruction Set | 27

Wide Immediate
MOVZ - Move Wide with Zero
MOVK - Move Wide with Keep

Data Transfer
STUR - Store Register
LDUR - Load Register

MOVZ moves an immediate value (16-bit value) to a register, and all the other bits outside the

immediate value are set to Zero.

MOVK moves an immediate value (16-bit value) to a register, and all the other bits outside the

immediate value remain the same.

Computer Architecture Processor Programming Examples | 28

9 Programming Examples

9.1 Section for each team member’s program
Each member worked on the code together to make one collective script.

9.1.1 Table of assembly instructions and binary instruction words
Refer to the tables within section 8.1.4.

9.1.2 Description of what your program does
The program takes in a control word which dictates the Datapath. This will determine what signals are

off and on. From there values are added into the registers and the operation is done within the ALU.

Computer Architecture Processor Performance | 29

10 Performance
Performance can be improved by allowing the length of the control word to be changed. If it changes,

then the time it takes for the program to run would be shortened. The same goes for the ALU and

Register file. If the number within the files are small enough to be represented by a smaller number of

bits, then it should be. Adding a pipelined datapath would also increase the overall speed of the

processor due to not waiting for each instruction to make it all of the way thorough the CPU. We could

also add some peripherals for more versatility in real world applications.

Computer Architecture Processor Errata | 30

11 Errata

11.1 Listing of features that do not work as expected.
1. Control unit

2. Datapath

11.2 Description with as much detail as is known about why these problems exist.
The control unit and Datapath were a part of the same lab. The group was having trouble determining

the values for the different variables such as PS and DA. We could not figure out all the values for each

one. This caused the code to not function properly. In the end, we did not have enough time to work out

all the different values, so that the control unit and Datapath could properly work.

